WOS Indexed (2022)
clarivate analytics

AMA, Agricultural Mechanization in Asia, Africa and Latin America

AMA, Agricultural Mechanization in Asia, Africa and Latin America (AMA) (issn: 00845841) is a peer reviewed journal first published online after indexing scopus in 1982. AMA is published by Farm Machinery Industrial Research Corp and Shin-Norinsha Co. AMA publishes every subjects of general engineering and agricultural engineering.

Submission Deadline
03 Jul 2022 (Vol - 53 , Issue- 07 )
Upcoming Publication
31 Jul 2022 (Vol - 53 , Issue 07 )

Aim and Scope :

AMA, Agricultural Mechanization in Asia, Africa and Latin America

AMA, Agricultural Mechanization in Asia, Africa and Latin America (ISSN: 00845841) is a peer-reviewed journal. The journal covers Agricultural and Biological Sciences and all sort of engineering topic. the journal's scopes are in the following fields but not limited to:

Azerbaijan Medical Journal Gongcheng Kexue Yu Jishu/Advanced Engineering Science Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery Interventional Pulmonology Interventional Pulmonology (middletown, de.)
Agricultural and Biological Sciences
Electrical Engineering and Telecommunication
Electronic Engineering
Computer Science & Engineering
Civil and architectural engineering
Mechanical and Materials Engineering
Transportation Engineering
Industrial Engineering
Industrial and Commercial Design
Information Engineering
Chemical Engineering
Food Engineering

An Economic Analysis of Mustard Production in Bundelkhand region of U.P., India

Paper ID- AMA-21-12-2021-10974

Mustard becomes an essential oilseeds crop with its positive nature of suitability to climate condition for its cultivation, being an important of human diet and industrial uses of its main and by product. Mustard is cultivated in all parts of the world and its oil as well as leaves occupy an important place in human diet. Mustard oil is equally used in the diet of vegetarians as well as non-vegetarians. This study was performed on One hundred twenty respondents who were selected through multistage sampling technique from four villages of Maudaha block of Hamirpur district. Descriptive statistical analysis was used to draw the inferences. Respondents were categorised as marginal, small, medium, and large size of farm. Cost of cultivation were increases with the farm size, the economic condition best in large size of farms compare to other size of farms. Highest cost incurred in the production of mustard was found in large size in farm Rs 49053 per hectare and least in marginal farms (Rs.39295). And over all farms cost of cultivation of mustard crop was found Rs 45292, with highest share of cost as human labour Rs 8038.25, per hectare. On overall gross income was recorded Rs 58496 and net income came to Rs 13202. Large farms gross income was found highest as Rs. 64268 and least was found with marginal farms i.e. Rs.53400 respectively. The overall benefit cost ratio over cost C1, C2, and C3 was found to be 1:2.15, 1:1.42 and 1:1.28 on all farms basis respectively. The coefficient of determination (R2) value was found to be 0.79 for independent variables like phosphorus(X1), nitrogen(X2),man-days (X3),irrigation(X4), seeds(X5). Phosphorous, Nitrogen, Plant protection chemicals and seeds were found significantly contributing in the yield. Man- days and irrigation are found over utilized resource and phosphorus, nitrogen, plant protection chemicals and seeds were found underutilized. The production function has been found increasing returns to scale.

Parallel Delaunay Triangulation for Large Data in Geographic Information System

Paper ID- AMA-21-12-2021-10973

Every day, data processing becomes increasingly important. It's vital to use high-performance computing to process such big data. There are billions of spatial points in Geographic Information Systems (GIS) to be managed within a reasonable period. One of the basic operations is to prepare triangulation data. This study proposed and implemented methods to produce Parallel Delaunay Triangulation for Large Data in Geographic Information System. Our proposed approach is based on the Divide and Conquer algorithm. The set of points in the regions can be divide into independent partitions, and each partition is separately triangulated. Lastly, we used stitching methods to merge these regions into a single result. In our implementation, we use C++ and MPI to evaluate our algorithm.

Gearbox design and dynamic load analysis of rice tracked combine harvester device

Paper ID- AMA-21-12-2021-10971

In this paper, aiming at the problems of low reliability and high failure rate of crawler combine gearbox, based on the theoretical design, the dynamic simulation of transmission system is carried out by using ADAMS software. The simulation results show that the transmission system is similar to the theoretical design results, and the fluctuation of the angular velocity curve of each axis is small, which preliminarily verified the transmission stability and accuracy of the gearbox. Then, transient dynamics analysis and modal analysis of critical components were performed by ANSYS simulation software. The results show that the strength of the critical parts meets the requirements and the critical parts do not resonate. Finally, the gearbox was prototyped and assembled on the test vehicle. The results show that the gearbox has good straight-line driving and cornering performance. The minimum natural frequency of the axis is 182.49HZ, which is lower than the frequency of its operation and does not cause resonance. The results of this paper will provide a basis for designing a gearbox design and dynamic load analysis of rice tracked combine harvester device.

Method to Recognize Litchi Fruit by Improved YOLOv3

Paper ID- AMA-20-12-2021-10970

High-accuracy recognition of litchi fruits is the key to yield estimation. To solve the problem of low detection rates of dense, small targets in orchard scenes, this paper proposes an improved YOLOv3 method for litchi fruit recognition. The litchi fruit target anchor frames in the dataset are re-clustered to obtain nine predefined anchor frames. The prediction scale of the network is adjusted, a 160 × 160 feature prediction scale is added to improve the detection of small targets, and the feature prediction scale for large-target detection in YOLOv3 is removed to simplify the network model. A dense connection module is added to the feature-extraction network to enhance the feature propagation capability and improve network performance. To train and test the litchi fruit dataset, immature (young fruit and expansion stage) and mature stages were constructed in an orchard scene, and 227018 labels were generated using LabelImg software. The F1 score and mean accuracy precision (mAP) were used to evaluate the network model, and the proposed method was experimentally compared with YOLOv3 for litchi images. The experiments showed that the recognition effect was significantly improved using the proposed model, with F1 and mAP of 0.851 and 88.9%, respectively, on the full dataset, which are better than YOLOv3 by 0.238 and 31.1 percentage points, respectively. Therefore, the method has a good effect for dense litchi fruit recognition in orchard scenarios and provides technical support for litchi yield estimation.

Design and field experiment of self-propelled Chinese little greens harvester

Paper ID- AMA-20-12-2021-10968

Aiming at the problems of difficult harvesting, low efficiency and high labor intensity of Chinese little greens, a self-propelled Chinese little greens harvester is designed. The bidirectional electric drive reciprocating cutter device is adopted to effectively improve the cutting efficiency and cutting quality. The motion cutting diagram of double-action cutter under different cutting speed ratio is drawn, which shows that the best cutting speed ratio to reduce the area of heavy cutting area and missing cutting area is k = 1.7, which could effectively reduce the phenomenon of heavy cutting and missing cutting. The inclined vertical flexible and orderly clamping conveying device is adopted to control the conveying speed at 1.2 ~ 1.5 times of the walking speed of machine to ensure the smooth conveying process and avoid congestion. The angle between the conveyor and the horizontal ground is controlled at 10 ° ~ 20 °. The field experiment shows that the performance of the harvest is good. The average time of harvesting Chinese little greens per 100 m2 is 57.17 seconds and the average loss rate is 6.475%. The research results could provide reference and theoretical basis for the development of other leafy vegetable harvesting machinery technology.