WOS Indexed (2022)
clarivate analytics

AMA, Agricultural Mechanization in Asia, Africa and Latin America

AMA, Agricultural Mechanization in Asia, Africa and Latin America (AMA) (issn: 00845841) is a peer reviewed journal first published online after indexing scopus in 1982. AMA is published by Farm Machinery Industrial Research Corp and Shin-Norinsha Co. AMA publishes every subjects of general engineering and agricultural engineering.

Submission Deadline
03 Jul 2022 (Vol - 53 , Issue- 07 )
Upcoming Publication
31 Jul 2022 (Vol - 53 , Issue 07 )

Aim and Scope :

AMA, Agricultural Mechanization in Asia, Africa and Latin America

AMA, Agricultural Mechanization in Asia, Africa and Latin America (ISSN: 00845841) is a peer-reviewed journal. The journal covers Agricultural and Biological Sciences and all sort of engineering topic. the journal's scopes are in the following fields but not limited to:

Azerbaijan Medical Journal Gongcheng Kexue Yu Jishu/Advanced Engineering Science Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery Interventional Pulmonology Interventional Pulmonology (middletown, de.)
Agricultural and Biological Sciences
Electrical Engineering and Telecommunication
Electronic Engineering
Computer Science & Engineering
Civil and architectural engineering
Mechanical and Materials Engineering
Transportation Engineering
Industrial Engineering
Industrial and Commercial Design
Information Engineering
Chemical Engineering
Food Engineering

An efficient in vitro regeneration protocol in guava cultivars (Hisar Safeda and Hisar surkha) using nodal and shoot tip explants

Paper ID- AMA-11-04-2022-11297

Guava being important cash crop grown in India, but the main technological hurdle is the good quality planting material because nowadays guava production is seriously hampered by wilting, root-knot nematodes and lack of cultivars. So, to provide true mother type plant which is free from disease and high productivity planting material, micro-propagation is only alternative and feasible tool, but micro-propagation in guava again faces problem of browning and microbial combination. So, the main aim of the study was to develop rapid and reproducible regeneration protocol for hybrid guava cvs to provide goods plants on large scale. MSM (Murashige and Skoog medium) and WPM (Woody plant medium) fortified with various combination of different plant growth regulators were used and found that WPM + 2.5 ppm BAP + 0.5 ppm IAA showed higher per cent shoot induction in nodal (51.70%) and shoot tip (52.29%) explants with 2.24 and 1.82 shoots/explants, respectively in cultivar Hisar Safeda. In Hisar Surkha, nodal explants revealed 53.81% and shoot tip explants 53.70 % shoot induction on WPM + 2.5 ppm BAP) + 0.2 ppm NAA with average of 2.04 and 1.32 shoots/explants, respectively. The in vitro regenerated shoots (micro shoots containing at least 3-4 leaves) were transplanted on different rooting medium but ½ strength MS medium + 2.0 ppm of IBA was found most effective per cent root induction of 71.78 % and 66.66% in Hisar Safeda and Hisar Surkha, respectively. These plantlets thus formed were grown on various combinations of sand, soil, vermiculite, farm yard manure and cocopeat for hardening and the medium having vermicullite and cocopeat (1:1) was found most effective with maximum 50-60% survival of plant after transplantation.

Effect of IBA and rooting media on air layering of Kagzi lime (Citrus aurantifolia Swingle) under rainfed conditions

Paper ID- AMA-10-04-2022-11296

The present investigation was undertaken to study the “Effect of IBA and rooting media on air layering of Kagzi lime (Citrus aurantifolia Swingle) under rainfed conditions” at the Rainfed Research Sub-Station for Sub-Tropical Fruits (RRSS), Raya, SKUAST- Jammu during the rainy season of 2020-2021. Juvenile branches with 1.00 to 2.00 cm in diameter were girdled and treated with rooting hormoneIndole-3- butyric acid (IBA) @(500 ppm, 1000 ppm and 1500 ppm), four levels of rooting media in different ratio viz., soil + sphagnum moss (2:1); soil + cocopeat + vermicompost (2:1:1) and soil + F.Y.M + sand (2:1:1) along with the control (soil)and their combinations were investigated. Callus was formed at the girdled portions on all air layers with or without the application of hormone. Results revealed that interaction effect of growth regulator and rooting media, IBA@1500 ppm + soil and sphagnum moss (2:1) proved significant in maximizing success percentage (%) of layered plants (95.99%), root parameters i.e. number of primary roots (30.67), number of secondary roots (40.00), maximum length of primary roots (10.70 cm), maximum length of secondary roots (10.27 cm) and survival percentage of air layered plants (98.68%) after planting, whereas, the minimum was reported in control.

Quality parameters of Kodo and Little millet based instant soup mixes

Paper ID- AMA-09-04-2022-11294

Nowadays, there is considerable interest in the development of millet-based products as they are rich in nutrients and other phyto-nutrients possessing health benefits. Instant soup mixes gained extended popularity in the recent years, for providing convenience, variety and taste. So, millet based instant soup mixes is a way to blend millets with mixture of other ingredients in an acceptable manner that finds a ready market. Statistically significant difference at p≤0.01 was observed between control soup mixes and ESFs with respect to water activity, water holding capacity, water absorption index and water solubility index. The Bulk density ranged from 0.68 g/ml to 0.64 g/ml, rehydration ratio from 2.16 % to 2.37%, water holding capacity from 1.53 to 2.14, water activity from 0.48 to 0.50, water absorption index from 6.51 g/100g to 2.88 g/100g and water solubility index from 6.88 g/100g to 5.65 g/100g for the soup mixes. Statistically significant difference at p≤0.01 was found between control and ESFs with respect to moisture, protein, fat, crude fiber, carbohydrates and energy contents. Moisture content ranged from 5.63% to 7.13 %, protein from 5.56 g/100g to 11.40 g/100g, fat from 0.63 g/100g to 2.80 g/100g, ash from 2.07 g/100g to 0.63 g/100g, crude fiber from 1.00 g/100g to 3.32 g/100 g, carbohydrate content from 85.12 g/100g and 74.46 g/100g and energy content from 369.0 K. Cal/100g to 359.4 K. Cal/100g for the soup mixes. Protein, fat, ash and crude fiber content of ESFs was significantly higher than the control soup mix.

Product Mix Optimization and System Analysis Using The Theory of Constraints Approach

Paper ID- AMA-09-04-2022-11293

The Theory of Constraints is a crucial management discipline that argues there is at least one limited resource in each production system, and a solution should be found to overcome this limited resource in order to increase the market share and profitability of firms. As the bottleneck in the system is identified and managed, production will occur on time and be available to the customer, since delays in the production process will be eliminated. Moreover, costs will be reduced as the efficiency at the bottleneck in the production line is improved, and thus the company can reach its profitability targets. The aim of this study is to determine the optimum product mix under the presence of limited resources in the system with the five-step continuous improvement process of the Theory of Constraints. Within this framework, research has been conducted to solve multiple bottleneck problems in a company operating in the metal processing industry. In this application, by analyzing the capacity utilization rates of the resources, the resources at the bottleneck in the system were identified and the optimal product mix was determined. As there is no throughput priority or mathematical method to production of subcomponents in current process, a new algorithm was proposed which is integrating the linear programming and fuzzy logic methodology with the theory of constraints approach. The problem was defined as an integer linear programming model and solved by an optimization software program called GAMS IDE.

Mechanization in Maize crop cultivation in Telangana, India - Energy Efficiency Indices and productivity

Paper ID- AMA-09-04-2022-11292

The field experiment and demonstrations were conducted at Agricultural Research Station, Karimnagar and in farmers fields in different mandals of Karimnagar district, Telangana, India from 2017-18 to 2019-20 on Mechanization in maize crop cultivation versus conventional /farmers method of cultivation to study various energy inputs and output energy equivalents, efficiency and productivity. The study consisted of two treatments 1.Conventional method 2.Mechanization in maize cultivation for sowing, spraying, harvesting and threshing operations. The results revealed that Cultivation of maize by mechanization requires significantly less input energy (36651 MJha-1) than compared to conventional farmers practice (37825 MJ ha-1) because of less labour usage under mechanization. The output energy in mechanized method of maize cultivation is significantly less (108089 MJ ha-1) over conventional farmers practice (122537 MJ ha-1) as energy accumulation in mechanization is only from grain yield, While in conventional method both grain and stalk yield contribute to significantly higher output energy and inturn higher net energy (84712 MJ ha-1). However energy efficiency and energy profitability is statistically on par in both methods of maize cultivation. The energy productivity (0.200 Kg ha-1) and energy intensity in economic terms (1.33 MJ Rs. -1) with mechanized method of maize cultivation resulted higher than conventional method indicating energy efficient sustainable production system with advantages of saving of labour mandays, reduction of cost of operation and time over conventional method of maize cultivation.