The manual method of weed control is effective, but the scarcity of labour during the peak season and delay in weeding operations ultimately reduces crop yield. The use of chemical herbicides over a period of time leads to environmental pollution. Mechanical weeding is preferred over chemical use because herbicides are expensive and hazardous to the environment. Therefore, the development of mechanical weeder is imperative to meet the demand of small-farm mechanization. The available engine-operated mechanical weeder increase drudgery to the operator due to exposure to high levels of vibration. Hence, the complexity of these situations has resulted in switching over to an electric- drive mechanical weeding system to increase the productivity of the man-machine system. Therefore, a battery-operated inter-row weeder has been developed. It has an electro-mechanical approach such as the application of a DC motor as a power source and a combination of weeding mechanisms to complete the operation with less drudgery and higher efficiency. The field experiments were conducted in soybean crops under sandy-loam soil conditions. The field performance of weeder for V- type blade and straight blade tool were evaluated at the forward speed of 2-3 km/h. The results showed that the average weeding efficiency, field capacity, field efficiency, percentage plant damage, and performance index of the machine for V-type blade were found to be 91.42%, %, 0.051 ha/h, 90.73%, 2.37% and 2496.30, whereas for straight blade 86.78%, 0.048 ha/h, 88.50%, 3.55%, and 1497.04 respectively. The average power consumption of the weeder for V-type blade and the straight blade was found 185.6 and 262.5 W. The average draft force 269 and 391 N was observed for V-type and straight blades. The performance of the V-blade was found better over the straight blade. The developed weeder was found suitable for small-farm mechanization.